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Abstract 

We implemented a U-net, a deep fully convolutional network to segment the input satellite 
imageries into ten classified classes based on multispectrum channels. We tried two different 
training methods; first, we trained all ten classes simultaneously with an IOU accuracy of 0.07. 
then, we trained ten models for each class individually and got more accurate results of 0.15. 
The accuracy of the model is varied among classes. The highest values belong to the building, 
trees, and corps classes and the lowest values are for cars and trucks. The main reasons for 
this error are the small dataset size, which is only 25 annotated images, and the heavily 
imbalanced distribution of classes. 

 

1.  Introduction 

Semantic segmentation for images can be defined as partitioning and classifying the image 
into meaningful parts and classifying each part at the pixel level into one of the pre-defined 
classes [1]. Semantic segmentation faces an inherent tension between semantics and location: 
global information resolves what, while local information resolves where [2]. While 
convolutional networks have existed for a long time, their success was limited due to the size 
of the available training sets and the size of the considered networks [3]. 

One issue of this project is the small training dataset size with the total number of training 
images of 25 object-labeled images. To overcome this problem, we use U-Net architecture, an 
extended form of Fully Connected Network FCN. The main idea of this approach is to use a 
CNN as a powerful feature extractor while replacing the fully connected layers with 
convolution ones to output spatial maps instead of classification scores. Those maps are 
upsampled to produce dense per-pixel output. This method allows training CNN in the end-
to-end manner for segmentation with input images of arbitrary sizes [1]. 

U-net is a neural network architecture designed primarily for image segmentation to have good 
localization and use context simultaneously [3]. The basic structure of a U-net architecture 
consists of two paths. The first path is the contracting path, also known as the encoder or the 
analysis path, which is similar to a regular convolution network and provides classification 
information. The second is an expansion path, also known as the decoder or the synthesis path, 
consisting of up-convolutions and concatenations with features from the contracting path. This 
expansion allows the network to learn localized classification information [4]. 



2.  Methodology 

2 .1 .  P re proc e s s ing  D at a  

2.1.1. Exploring data 

We have two types of data. Satellite imagery files are saved in GeoTiff format, and ground-
true labeled segments are saved in WKT (well-known text) format. Satellite images are divided 
into four categories: RGB, Panchromatic, Multispectral 8-bands, and SWIR 8-bands (see Table 
1). All images are captured from 18 locations from the same region of the earth. Each location 
contains 25 pictures (5x5 images) and are indexed by their relative locations. For example, 
image id 6010-1-3 is an image in the second row and fourth column of location id 6010 (see 
Figure 1). In total, we have 450 images per type (the total number of tiff files is 450*4=1800). 
Twenty-five of these 450 images are segmented and labeled in 10 classes. We use the open-
source libraries tifffile and pandas to read and manipulate GeoTiff files. Also, we are using 
the seaborn library to visualize our data. 

We have an issue with the distribution of classes among images. Figure 3 shows that target 
classes are heavily imbalanced within each set of images, e.g., %59.61 for crops against 
%0.008 for trucks. One solution to this problem is classifying each class separately instead of 
using one multi-classifier [1]. 

 Table 1: Satellite imagery specifications 

Image type Size 
Resolution 

(m) 
Spectral range 

(nm) 
Dynamic Range 

(bit/pixel) 
W:H ratio 

RGB 3 x 3350 x 3338   8 1:1.0036 
Panchromatic 1 x 3349 x 3338 0.31 450-800 11 1:1.0033 
Multispectral 8 x 838 x 835 1.24 400-1040 11 1:1.0036 
SWIR 8 x 134 x 134 7.5 1195-2365 14 1:1 

 

 
Figure 1:Addressing images based on ImageId and ImageLocationId 

 

  
Figure 2: All layers of data for each ImageId 

 



 
Figure 3: Distribution of classes as the percentage of the area for each class 

2.1.2. Data Alignment 

We need to extract data from GeoTiff files based on locations addressed by the shapefiles in 
wkt format. To do that, we use the shapely library. This library contains a wkt class to read 
and write shapefiles in several formats like text, JSON, and binary. 

We implemented DataUtil and DataImage classes to make everything reusable and easy to 
debug. DataUtil class is responsible for reading data from files and creating data frames. 
Dataimage class is responsible for creating, resizing, aligning all images, and converting them 
into one tensor as network inputs. 

The alignment is challenging because we have three different resolutions. To solve this issue, 
we use resize method in the cv2 library to increase the size of all images to the largest 
resolution, which is RGB files (3350 x 3338). Also, we used the pansharpening technique to 
improve the resolution of the multiband images. 

We will crop images into 112 x 112 baches to train and test the model. 

Also, we have a util package to handle loss functions and metrics that will use inside the 
model. 

2 .2 .  Mo del  A rch i t ec t u re  

2.2.1. Network design 

We decided to use a U-Net model in this project, which is common in problems with small 
training datasets like ours. We have implemented a class UnetModel using TensorFlow and 
Keras libraries with all needed function signatures. The primary architecture is shown in 
Figure 4 and Table Table 2. We will use Relu as our activation function and Adam optimizer 
with learning rates1e-3 and1e-4. All conv_layers are 3x3 with the same size padding. All max-
pool layers are 2x2. We also used batch-normalization and drop-out(25%) to avoid overfitting. 

 

 
Figure 4: Multispectral U-Net architecture 

  



Table 2: Network design summary. 
Layer (type) Output Shape Param # Connected to 
input_2 (InputLayer)                            (None, 256, 256, 36)   0 []                                
 conv2d_23 (Conv2D)                              (None, 256, 256, 32)   10400 ['input_2[0][0]']                 
 conv2d_24 (Conv2D)                              (None, 256, 256, 32)   9248 ['conv2d_23[0][0]']               
 max_pooling2d_5 (MaxPooling2D)                  (None, 128, 128, 32)   0 ['conv2d_24[0][0]']               
 batch_normalization_8 (BatchNormalization)      (None, 128, 128, 32)   128 ['max_pooling2d_5[0][0]']         
 conv2d_25 (Conv2D)                              (None, 128, 128, 64)   18496 ['batch_normalization_8[0][0]']   
 conv2d_26 (Conv2D)                              (None, 128, 128, 64)   36928 ['conv2d_25[0][0]']               
 max_pooling2d_6 (MaxPooling2D)                  (None, 64, 64, 64)     0 ['conv2d_26[0][0]']               
 dropout_8 (Dropout)                             (None, 64, 64, 64)     0 ['max_pooling2d_6[0][0]']         
 batch_normalization_9 (BatchNormalization)      (None, 64, 64, 64)     256 ['dropout_8[0][0]']               
 conv2d_27 (Conv2D)                              (None, 64, 64, 128)    73856 ['batch_normalization_9[0][0]']   
 conv2d_28 (Conv2D)                              (None, 64, 64, 128)    147584 ['conv2d_27[0][0]']               
 max_pooling2d_7 (MaxPooling2D)                  (None, 32, 32, 128)    0 ['conv2d_28[0][0]']               
 dropout_9 (Dropout)                             (None, 32, 32, 128)    0 ['max_pooling2d_7[0][0]']         
 batch_normalization_10 (BatchNormalization)     (None, 32, 32, 128)    512 ['dropout_9[0][0]']               
 conv2d_29 (Conv2D)                              (None, 32, 32, 256)    295168 ['batch_normalization_10[0][0]']  
 conv2d_30 (Conv2D)                              (None, 32, 32, 256)    590080 ['conv2d_29[0][0]']               
 max_pooling2d_8 (MaxPooling2D)                  (None, 16, 16, 256)    0 ['conv2d_30[0][0]']               
 dropout_10 (Dropout)                            (None, 16, 16, 256)    0 ['max_pooling2d_8[0][0]']         
 batch_normalization_11 (BatchNormalization)     (None, 16, 16, 256)    1024 ['dropout_10[0][0]']              
 conv2d_31 (Conv2D)                              (None, 16, 16, 512)    1180160 ['batch_normalization_11[0][0]']  
 conv2d_32 (Conv2D)                              (None, 16, 16, 512)    2359808 ['conv2d_31[0][0]']               
 max_pooling2d_9 (MaxPooling2D)                  (None, 8, 8, 512)      0 ['conv2d_32[0][0]']               
 dropout_11 (Dropout)                            (None, 8, 8, 512)      0 ['max_pooling2d_9[0][0]']         
 conv2d_33 (Conv2D)                              (None, 8, 8, 1024)     4719616 ['dropout_11[0][0]']              
 conv2d_34 (Conv2D)                              (None, 8, 8, 1024)     9438208 ['conv2d_33[0][0]']               
 conv2d_transpose_5 (Conv2DTranspose)            (None, 16, 16, 512)    2097664 ['conv2d_34[0][0]']               
 concatenate_5 (Concatenate)                     (None, 16, 16, 1024)   0 ['conv2d_transpose_5[0][0]', 

'conv2d_32[0][0]'] 
 batch_normalization_12 (BatchNormalization)     (None, 16, 16, 1024)   4096 ['concatenate_5[0][0]']           
 conv2d_35 (Conv2D)                              (None, 16, 16, 512)    4719104 ['batch_normalization_12[0][0]']  
 conv2d_36 (Conv2D)                              (None, 16, 16, 512)    2359808 ['conv2d_35[0][0]']               
 dropout_12 (Dropout)                            (None, 16, 16, 512)    0 ['conv2d_36[0][0]']               
 conv2d_transpose_6 (Conv2DTranspose)            (None, 32, 32, 256)    524544 ['dropout_12[0][0]']              
 concatenate_6 (Concatenate)                     (None, 32, 32, 512)    0 ['conv2d_transpose_6[0][0]', 

'conv2d_30[0][0]'] 
 batch_normalization_13 (BatchNormalization)     (None, 32, 32, 512)    2048 ['concatenate_6[0][0]']           
 conv2d_37 (Conv2D)                              (None, 32, 32, 256)    1179904 ['batch_normalization_13[0][0]']  
 conv2d_38 (Conv2D)                              (None, 32, 32, 256)    590080 ['conv2d_37[0][0]']               
 dropout_13 (Dropout)                            (None, 32, 32, 256)    0 ['conv2d_38[0][0]']               
 conv2d_transpose_7 (Conv2DTranspose)            (None, 64, 64, 128)    131200 ['dropout_13[0][0]']              
 concatenate_7 (Concatenate)                     (None, 64, 64, 256)    0 ['conv2d_transpose_7[0][0]', 

'conv2d_28[0][0]'] 
 batch_normalization_14 (BatchNormalization)     (None, 64, 64, 256)    1024 ['concatenate_7[0][0]']           
 conv2d_39 (Conv2D)                              (None, 64, 64, 128)    295040 ['batch_normalization_14[0][0]']  
 conv2d_40 (Conv2D)                              (None, 64, 64, 128)    147584 ['conv2d_39[0][0]']               
 dropout_14 (Dropout)                            (None, 64, 64, 128)    0 ['conv2d_40[0][0]']               
 conv2d_transpose_8 (Conv2DTranspose)            (None, 128, 128, 64    32832 ['dropout_14[0][0]']              
 concatenate_8 (Concatenate)                     (None, 128, 128, 128)  0 ['conv2d_transpose_8[0][0]', 

'conv2d_26[0][0]'] 
 batch_normalization_15 (BatchNormalization)     (None, 128, 128, 128)  512 ['concatenate_8[0][0]']           
 conv2d_41 (Conv2D)                              (None, 128, 128, 64)   73792 ['batch_normalization_15[0][0]']  
 conv2d_42 (Conv2D)                              (None, 128, 128, 64)   36928 ['conv2d_41[0][0]']               
 dropout_15 (Dropout)                            (None, 128, 128, 64)   0 ['conv2d_42[0][0]']               
 conv2d_transpose_9 (Conv2DTranspose)            (None, 256, 256, 32)   8224 ['dropout_15[0][0]']              
 concatenate_9 (Concatenate)                     (None, 256, 256, 64)   0 ['conv2d_transpose_9[0][0]', 

'conv2d_24[0][0]'] 
 conv2d_43 (Conv2D)                              (None, 256, 256, 32)   18464 ['concatenate_9[0][0]']           
 FCN (softmax) (None, 256, 256, 32)   9248 ['conv2d_43[0][0]']               
 FCN (sigmoid) (None, 256, 256, 10)   330 ['FCN[0][0]']         
Total params: 31,113,898      
Trainable params: 31,109,098  
Non-trainable params: 4,800 

   

 
  



2.2.2. Metrics and loss functions 

Since the shapefiles are not mutually exclusive (due to overlapping between multiple classes), 
using categorical cross-entropy does not work in this case. Instead, we will use binary cross-
entropy (BCE-Dice Loss) as our classification loss function (equation 1). Since we have 
unbalanced distribution in our labeled dataset, we decided to train the model individually for 
each class as a model improvement. Thus, we have two types of trained models; one model 
with all ten classes and ten models with one binary classifier. 

 

𝐿𝑜𝑠𝑠(𝑤) =
1
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 Equation 1 

𝐽(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
  ,   0 ≤ 𝐽(𝐴, 𝐵) ≤ 1 Equation 2 

 

We need to use the Jaccard index [5] as mentioned on the Kaggle website [6] as our evaluation 
metric (equation 2). We implemented both of them inside the utils package: 
 
jaccard_distance(y_true, y_pred, smooth=100) 
    intersection = K.sum(K.abs(y_true * y_pred), axis=-1) 
    sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1) 
    jac = (intersection + smooth) / (sum_ - intersection + smooth) 
    return (1 - jac) * smooth 
 
dice_coefficient(y_true, y_pred) 
    intersection = tf.reduce_sum(tf.multiply(y_true, y_pred)) 
    union = tf.reduce_sum(tf.square(y_true)) + 
tf.reduce_sum(tf.square(y_pred)) 
    loss = 1. - 2 * intersection / (union + 
tf.constant(tf.keras.backend.epsilon())) 
    return loss 

  



3.  Resul ts  

3 .1 .  O ne  m ode l  f o r a l l  c l a sse s  

In this scenario, we trained the model with 
all classes at once. The batch size was 64, 
and the input size was 256x256 pixels. 

Figure 5 shows the training and validation 
loss during the training. The maximum 
epoch number was 50. Figure 6 shows the 
prediction results of one random tile of 
imageId 6100_1_3. It works pretty well 
only for buildings and trees. Overall IOU 
accuracy is 0.07, which is very low. 
  

 
Figure 5: Training and validation loss diagram 

 
Figure 6: Results of one model for ten classes 



3 .2 .  Te n b ina ry  m o de l s  we re  t r a ine d  ind iv idua l ly  f o r e a c h  c la s s  

To solve the problem of the imbalanced labeled dataset, we tried to train the model for each 
class individually. Figure 6 shows a slight improvement in segmentation. But the overall IOU 
accuracy is still as low as 0.15.  

  
Figure 7: Results of one model for individual class 



4.  Conclusion 

We implemented a U-net fully convolutional network to segment the input satellite imageries 
into classified classes in this project. At first, we trained all ten classes simultaneously with 
an IOU accuracy of 0.07. We found that the main reasons for this error are the small size of 
the dataset and the heavily imbalanced distribution of classes. To overcome this problem, we 
trained ten models for each class individually and got more accurate results of 0.15, which is 
still considered low. The accuracy of the model is varied among classes. The highest values 
belong to the building, trees, and corps classes and the lowest values are for cars and trucks. 

There are two other possible improvements; Data augmentation and stratified sampling, which 
we are trying to implement in future works. 
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