
Satellite Imagery Feature Detection using Deep
Convolutional Neural Network, U-NET

(Final Report)

Ardavan Sassani

Department of Computer Science
Georgia State University

asassani1@gsu.edu

Abstract

We implemented a U-net, a deep fully convolutional network to segment the input satellite
imageries into ten classified classes based on multispectrum channels. We tried two different
training methods; first, we trained all ten classes simultaneously with an IOU accuracy of 0.07.
then, we trained ten models for each class individually and got more accurate results of 0.15.
The accuracy of the model is varied among classes. The highest values belong to the building,
trees, and corps classes and the lowest values are for cars and trucks. The main reasons for
this error are the small dataset size, which is only 25 annotated images, and the heavily
imbalanced distribution of classes.

1. Introduction

Semantic segmentation for images can be defined as partitioning and classifying the image
into meaningful parts and classifying each part at the pixel level into one of the pre-defined
classes [1]. Semantic segmentation faces an inherent tension between semantics and location:
global information resolves what, while local information resolves where [2]. While
convolutional networks have existed for a long time, their success was limited due to the size
of the available training sets and the size of the considered networks [3].

One issue of this project is the small training dataset size with the total number of training
images of 25 object-labeled images. To overcome this problem, we use U-Net architecture, an
extended form of Fully Connected Network FCN. The main idea of this approach is to use a
CNN as a powerful feature extractor while replacing the fully connected layers with
convolution ones to output spatial maps instead of classification scores. Those maps are
upsampled to produce dense per-pixel output. This method allows training CNN in the end-
to-end manner for segmentation with input images of arbitrary sizes [1].

U-net is a neural network architecture designed primarily for image segmentation to have good
localization and use context simultaneously [3]. The basic structure of a U-net architecture
consists of two paths. The first path is the contracting path, also known as the encoder or the
analysis path, which is similar to a regular convolution network and provides classification
information. The second is an expansion path, also known as the decoder or the synthesis path,
consisting of up-convolutions and concatenations with features from the contracting path. This
expansion allows the network to learn localized classification information [4].

2. Methodology

2 .1 . P re proc e s s ing D at a

2.1.1. Exploring data

We have two types of data. Satellite imagery files are saved in GeoTiff format, and ground-
true labeled segments are saved in WKT (well-known text) format. Satellite images are divided
into four categories: RGB, Panchromatic, Multispectral 8-bands, and SWIR 8-bands (see Table
1). All images are captured from 18 locations from the same region of the earth. Each location
contains 25 pictures (5x5 images) and are indexed by their relative locations. For example,
image id 6010-1-3 is an image in the second row and fourth column of location id 6010 (see
Figure 1). In total, we have 450 images per type (the total number of tiff files is 450*4=1800).
Twenty-five of these 450 images are segmented and labeled in 10 classes. We use the open-
source libraries tifffile and pandas to read and manipulate GeoTiff files. Also, we are using
the seaborn library to visualize our data.

We have an issue with the distribution of classes among images. Figure 3 shows that target
classes are heavily imbalanced within each set of images, e.g., %59.61 for crops against
%0.008 for trucks. One solution to this problem is classifying each class separately instead of
using one multi-classifier [1].

 Table 1: Satellite imagery specifications

Image type Size
Resolution

(m)
Spectral range

(nm)
Dynamic Range

(bit/pixel)
W:H ratio

RGB 3 x 3350 x 3338 8 1:1.0036
Panchromatic 1 x 3349 x 3338 0.31 450-800 11 1:1.0033
Multispectral 8 x 838 x 835 1.24 400-1040 11 1:1.0036
SWIR 8 x 134 x 134 7.5 1195-2365 14 1:1

Figure 1:Addressing images based on ImageId and ImageLocationId

Figure 2: All layers of data for each ImageId

Figure 3: Distribution of classes as the percentage of the area for each class

2.1.2. Data Alignment

We need to extract data from GeoTiff files based on locations addressed by the shapefiles in
wkt format. To do that, we use the shapely library. This library contains a wkt class to read
and write shapefiles in several formats like text, JSON, and binary.

We implemented DataUtil and DataImage classes to make everything reusable and easy to
debug. DataUtil class is responsible for reading data from files and creating data frames.
Dataimage class is responsible for creating, resizing, aligning all images, and converting them
into one tensor as network inputs.

The alignment is challenging because we have three different resolutions. To solve this issue,
we use resize method in the cv2 library to increase the size of all images to the largest
resolution, which is RGB files (3350 x 3338). Also, we used the pansharpening technique to
improve the resolution of the multiband images.

We will crop images into 112 x 112 baches to train and test the model.

Also, we have a util package to handle loss functions and metrics that will use inside the
model.

2 .2 . Mo del A rch i t ec t u re

2.2.1. Network design

We decided to use a U-Net model in this project, which is common in problems with small
training datasets like ours. We have implemented a class UnetModel using TensorFlow and
Keras libraries with all needed function signatures. The primary architecture is shown in
Figure 4 and Table Table 2. We will use Relu as our activation function and Adam optimizer
with learning rates1e-3 and1e-4. All conv_layers are 3x3 with the same size padding. All max-
pool layers are 2x2. We also used batch-normalization and drop-out(25%) to avoid overfitting.

Figure 4: Multispectral U-Net architecture

Table 2: Network design summary.
Layer (type) Output Shape Param # Connected to
input_2 (InputLayer) (None, 256, 256, 36) 0 []
 conv2d_23 (Conv2D) (None, 256, 256, 32) 10400 ['input_2[0][0]']
 conv2d_24 (Conv2D) (None, 256, 256, 32) 9248 ['conv2d_23[0][0]']
 max_pooling2d_5 (MaxPooling2D) (None, 128, 128, 32) 0 ['conv2d_24[0][0]']
 batch_normalization_8 (BatchNormalization) (None, 128, 128, 32) 128 ['max_pooling2d_5[0][0]']
 conv2d_25 (Conv2D) (None, 128, 128, 64) 18496 ['batch_normalization_8[0][0]']
 conv2d_26 (Conv2D) (None, 128, 128, 64) 36928 ['conv2d_25[0][0]']
 max_pooling2d_6 (MaxPooling2D) (None, 64, 64, 64) 0 ['conv2d_26[0][0]']
 dropout_8 (Dropout) (None, 64, 64, 64) 0 ['max_pooling2d_6[0][0]']
 batch_normalization_9 (BatchNormalization) (None, 64, 64, 64) 256 ['dropout_8[0][0]']
 conv2d_27 (Conv2D) (None, 64, 64, 128) 73856 ['batch_normalization_9[0][0]']
 conv2d_28 (Conv2D) (None, 64, 64, 128) 147584 ['conv2d_27[0][0]']
 max_pooling2d_7 (MaxPooling2D) (None, 32, 32, 128) 0 ['conv2d_28[0][0]']
 dropout_9 (Dropout) (None, 32, 32, 128) 0 ['max_pooling2d_7[0][0]']
 batch_normalization_10 (BatchNormalization) (None, 32, 32, 128) 512 ['dropout_9[0][0]']
 conv2d_29 (Conv2D) (None, 32, 32, 256) 295168 ['batch_normalization_10[0][0]']
 conv2d_30 (Conv2D) (None, 32, 32, 256) 590080 ['conv2d_29[0][0]']
 max_pooling2d_8 (MaxPooling2D) (None, 16, 16, 256) 0 ['conv2d_30[0][0]']
 dropout_10 (Dropout) (None, 16, 16, 256) 0 ['max_pooling2d_8[0][0]']
 batch_normalization_11 (BatchNormalization) (None, 16, 16, 256) 1024 ['dropout_10[0][0]']
 conv2d_31 (Conv2D) (None, 16, 16, 512) 1180160 ['batch_normalization_11[0][0]']
 conv2d_32 (Conv2D) (None, 16, 16, 512) 2359808 ['conv2d_31[0][0]']
 max_pooling2d_9 (MaxPooling2D) (None, 8, 8, 512) 0 ['conv2d_32[0][0]']
 dropout_11 (Dropout) (None, 8, 8, 512) 0 ['max_pooling2d_9[0][0]']
 conv2d_33 (Conv2D) (None, 8, 8, 1024) 4719616 ['dropout_11[0][0]']
 conv2d_34 (Conv2D) (None, 8, 8, 1024) 9438208 ['conv2d_33[0][0]']
 conv2d_transpose_5 (Conv2DTranspose) (None, 16, 16, 512) 2097664 ['conv2d_34[0][0]']
 concatenate_5 (Concatenate) (None, 16, 16, 1024) 0 ['conv2d_transpose_5[0][0]',

'conv2d_32[0][0]']
 batch_normalization_12 (BatchNormalization) (None, 16, 16, 1024) 4096 ['concatenate_5[0][0]']
 conv2d_35 (Conv2D) (None, 16, 16, 512) 4719104 ['batch_normalization_12[0][0]']
 conv2d_36 (Conv2D) (None, 16, 16, 512) 2359808 ['conv2d_35[0][0]']
 dropout_12 (Dropout) (None, 16, 16, 512) 0 ['conv2d_36[0][0]']
 conv2d_transpose_6 (Conv2DTranspose) (None, 32, 32, 256) 524544 ['dropout_12[0][0]']
 concatenate_6 (Concatenate) (None, 32, 32, 512) 0 ['conv2d_transpose_6[0][0]',

'conv2d_30[0][0]']
 batch_normalization_13 (BatchNormalization) (None, 32, 32, 512) 2048 ['concatenate_6[0][0]']
 conv2d_37 (Conv2D) (None, 32, 32, 256) 1179904 ['batch_normalization_13[0][0]']
 conv2d_38 (Conv2D) (None, 32, 32, 256) 590080 ['conv2d_37[0][0]']
 dropout_13 (Dropout) (None, 32, 32, 256) 0 ['conv2d_38[0][0]']
 conv2d_transpose_7 (Conv2DTranspose) (None, 64, 64, 128) 131200 ['dropout_13[0][0]']
 concatenate_7 (Concatenate) (None, 64, 64, 256) 0 ['conv2d_transpose_7[0][0]',

'conv2d_28[0][0]']
 batch_normalization_14 (BatchNormalization) (None, 64, 64, 256) 1024 ['concatenate_7[0][0]']
 conv2d_39 (Conv2D) (None, 64, 64, 128) 295040 ['batch_normalization_14[0][0]']
 conv2d_40 (Conv2D) (None, 64, 64, 128) 147584 ['conv2d_39[0][0]']
 dropout_14 (Dropout) (None, 64, 64, 128) 0 ['conv2d_40[0][0]']
 conv2d_transpose_8 (Conv2DTranspose) (None, 128, 128, 64 32832 ['dropout_14[0][0]']
 concatenate_8 (Concatenate) (None, 128, 128, 128) 0 ['conv2d_transpose_8[0][0]',

'conv2d_26[0][0]']
 batch_normalization_15 (BatchNormalization) (None, 128, 128, 128) 512 ['concatenate_8[0][0]']
 conv2d_41 (Conv2D) (None, 128, 128, 64) 73792 ['batch_normalization_15[0][0]']
 conv2d_42 (Conv2D) (None, 128, 128, 64) 36928 ['conv2d_41[0][0]']
 dropout_15 (Dropout) (None, 128, 128, 64) 0 ['conv2d_42[0][0]']
 conv2d_transpose_9 (Conv2DTranspose) (None, 256, 256, 32) 8224 ['dropout_15[0][0]']
 concatenate_9 (Concatenate) (None, 256, 256, 64) 0 ['conv2d_transpose_9[0][0]',

'conv2d_24[0][0]']
 conv2d_43 (Conv2D) (None, 256, 256, 32) 18464 ['concatenate_9[0][0]']
 FCN (softmax) (None, 256, 256, 32) 9248 ['conv2d_43[0][0]']
 FCN (sigmoid) (None, 256, 256, 10) 330 ['FCN[0][0]']
Total params: 31,113,898
Trainable params: 31,109,098
Non-trainable params: 4,800

2.2.2. Metrics and loss functions

Since the shapefiles are not mutually exclusive (due to overlapping between multiple classes),
using categorical cross-entropy does not work in this case. Instead, we will use binary cross-
entropy (BCE-Dice Loss) as our classification loss function (equation 1). Since we have
unbalanced distribution in our labeled dataset, we decided to train the model individually for
each class as a model improvement. Thus, we have two types of trained models; one model
with all ten classes and ten models with one binary classifier.

𝐿𝑜𝑠𝑠(𝑤) =
1

𝑁
 𝐻(𝑝, 𝑞)

ே

ୀଵ

= −
1

𝑁
[𝑦𝑙𝑜𝑔𝑦ො + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦ො)]

ே

ୀଵ

 Equation 1

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

|𝐴 ∩ 𝐵|

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 , 0 ≤ 𝐽(𝐴, 𝐵) ≤ 1 Equation 2

We need to use the Jaccard index [5] as mentioned on the Kaggle website [6] as our evaluation
metric (equation 2). We implemented both of them inside the utils package:

jaccard_distance(y_true, y_pred, smooth=100)
 intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
 sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
 jac = (intersection + smooth) / (sum_ - intersection + smooth)
 return (1 - jac) * smooth

dice_coefficient(y_true, y_pred)
 intersection = tf.reduce_sum(tf.multiply(y_true, y_pred))
 union = tf.reduce_sum(tf.square(y_true)) +
tf.reduce_sum(tf.square(y_pred))
 loss = 1. - 2 * intersection / (union +
tf.constant(tf.keras.backend.epsilon()))
 return loss

3. Resul ts

3 .1 . O ne m ode l f o r a l l c l a sse s

In this scenario, we trained the model with
all classes at once. The batch size was 64,
and the input size was 256x256 pixels.

Figure 5 shows the training and validation
loss during the training. The maximum
epoch number was 50. Figure 6 shows the
prediction results of one random tile of
imageId 6100_1_3. It works pretty well
only for buildings and trees. Overall IOU
accuracy is 0.07, which is very low.

Figure 5: Training and validation loss diagram

Figure 6: Results of one model for ten classes

3 .2 . Te n b ina ry m o de l s we re t r a ine d ind iv idua l ly f o r e a c h c la s s

To solve the problem of the imbalanced labeled dataset, we tried to train the model for each
class individually. Figure 6 shows a slight improvement in segmentation. But the overall IOU
accuracy is still as low as 0.15.

Figure 7: Results of one model for individual class

4. Conclusion

We implemented a U-net fully convolutional network to segment the input satellite imageries
into classified classes in this project. At first, we trained all ten classes simultaneously with
an IOU accuracy of 0.07. We found that the main reasons for this error are the small size of
the dataset and the heavily imbalanced distribution of classes. To overcome this problem, we
trained ten models for each class individually and got more accurate results of 0.15, which is
still considered low. The accuracy of the model is varied among classes. The highest values
belong to the building, trees, and corps classes and the lowest values are for cars and trucks.

There are two other possible improvements; Data augmentation and stratified sampling, which
we are trying to implement in future works.

5. Acknowledgment

We genuinely wish to thank Dr. Ji for his guidance and special thanks to the DICE lab for their
support.

6. References

[1] V. Iglovikov, S. Mushinskiy, and V. Osin, "Satellite Imagery Feature Detection using Deep

Convolutional Neural Network: A Kaggle Competition," 6 2017.

[2] E. Shelhamer, J. Long, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 640-651, 4
2017.

[3] O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional Networks for Biomedical Image
Segmentation," 5 2015.

[4] N. Siddique, S. Paheding, C. P. Elkin and V. Devabhaktuni, "U-net and its variants for medical
image segmentation: A review of theory and applications," IEEE Access, 2021.

[5] "Wikkipedia," [Online]. Available: https://en.wikipedia.org/wiki/Jaccard_index. [Accessed 22 03
2022].

[6] "Kaggle," [Online]. Available: https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection.
[Accessed 22 03 2022].

